Aucune donnée à afficher
Lire la suite
نعتبر الدالة العددية \(f\) المعرفة على \([2,+\infty[\) بــ : \(f(x)=x-2 \sqrt{x-1}\)1) بين أن \(f\) تقبل دالة عددية معرفة على مجال \(J\) يجب تحديده .2) حدد \(\forall x \in J: f^{-1}(x)\) تصحيح حاول إنجاز التمرين قبل مشاهدة التصحيح 1. بين أن \(f\) تقبل دالة عددية معرفة على مجال \(J\) يجب تحديده . لتكن \(x \geq 2\) لديــنا...

On considère la fonction \(f\) définie par\[\left\{\begin{aligned}&f(x)=\frac{x^2}{|x|} \text { si } x \neq 0 \\&f(0)=0\end{aligned}\right.\]1) Donner une expression de \(f\) sans valeur absolue2) Calculer \(\lim _{x \rightarrow 0^{+}} f(x), \lim _{x \rightarrow 0^{-}} f(x)\)3) \(f\) est elle continue au point 0

Calculer les produits suivants : \(A=\sqrt{3} \cdot \sqrt{12}\)\(B=\sqrt{7} \cdot \sqrt{28}\)\(C=\sqrt{19} \cdot \sqrt{76}\)\(D=\sqrt{50} \cdot \sqrt{\frac{1}{2}}\)\(E=\sqrt{\frac{9}{10}} \cdot \sqrt{\frac{40}{81}}\)\(F=\sqrt{14} \cdot \sqrt{6} \cdot \sqrt{21}\)\(G=\sqrt{55} \cdot \sqrt{33} \sqrt{15}\)\(H=\sqrt{360} \cdot \sqrt{18} \sqrt{605}\)

soit \(a, b\) deux réels positifs non nuls , simplifier : \(A=\sqrt{\frac{25 a^2}{9}}\)\(B=\frac{1}{\sqrt{b}} \cdot \sqrt{\frac{b}{a}} \cdot \sqrt{b a}\)\(C=\sqrt{\frac{b}{a}} \cdot \sqrt{b^2 a} \cdot \frac{1}{\sqrt{b}}\)\(D=\sqrt{b^3} \sqrt{a b} \cdot \sqrt{b}\)\(E=\frac{\sqrt{b a^3} \cdot \sqrt{a b^2} \cdot \sqrt{(a b)^5}}{\sqrt{a b^4} \cdot \sqrt{b a^6}}\)

a est un réel positif, simplifier : \begin{aligned}&A=\sqrt{36 a^2} \\&B=\sqrt{144 a^2+25 a^2} \\&C=\sqrt{\frac{a^2}{16}}+\sqrt{\frac{a^2}{9}} \\&D=\sqrt{225 a^2}-\sqrt{121 a^2}\end{aligned}
