On considère la fonction \(f\) définie par\[\left\{\begin{aligned}&f(x)=\frac{x^2}{|x|} \text { si } x \neq 0 \\&f(0)=0\end{aligned}\right.\]1) Donner une expression de \(f\) sans valeur absolue2) Calculer \(\lim _{x \rightarrow 0^{+}} f(x), \lim _{x \rightarrow 0^{-}} f(x)\)3) \(f\) est elle continue au point 0
نعتبر الدالة العددية \(f\) المعرفة على \([2,+\infty[\) بــ : \(f(x)=x-2 \sqrt{x-1}\)1) بين أن \(f\) تقبل دالة عددية معرفة على مجال \(J\) يجب تحديده .2) حدد \(\forall x \in J: f^{-1}(x)\) تصحيح حاول إنجاز التمرين قبل مشاهدة التصحيح 1. بين أن \(f\) تقبل دالة عددية معرفة على مجال \(J\) يجب تحديده . لتكن \(x \geq 2\) لديــنا...
Compléter les égalités : \(\sqrt{24}=\sqrt{\ldots \cdot 6}=\sqrt{\ldots} \cdot \sqrt{6}=\ldots \sqrt{6}\)\(\sqrt{32}=\sqrt{\ldots \cdot 2}=\sqrt{\ldots} \cdot \sqrt{2}=\ldots \sqrt{2}\)\(\sqrt{48}=\sqrt{\ldots \cdot 16}=\sqrt{\cdots} \cdot \sqrt{16}=4 \sqrt{\ldots}\)\(5 \sqrt{2}=\sqrt{\cdots} \cdot \sqrt{2}=\sqrt{\ldots \cdot 2}=\sqrt{\cdots}\)\(-3 \sqrt{11}=-\sqrt{\cdots}...
Calculer : \(3 \sqrt{5} \cdot 4 \cdot \sqrt{5}\)\(3 \sqrt{5}+4 \cdot \sqrt{5}\)\(-2 \sqrt{11} \cdot 5 \cdot \sqrt{11}\)\(-2 \sqrt{11}+5 \cdot \sqrt{11}\)
trewterw