No data to show
Read More
Si on remplace directement , nous allons obtenir une F.I \(\left(\frac{0}{0}\right)\). Afin d'enlever cette indétermination nous allons diviser le numérateur et le numérateur par \(x -1\) On a : \[\begin{aligned}&\lim\limits_{x \rightarrow 1} \frac{\sqrt{x+3}-\sqrt[3]{3 x+5}}{1-\tan \left(\frac{\pi}{4} x\right)} \\& =\lim\limits_{x \rightarrow 1}...
On considère la fonction \(f\) définie sur \([2,+\infty[\) par \(f(x)=x-2 \sqrt{x-1}\) 1) Montrer que \(f\) admet une fonction réciproque définie sur un intervalle \(J\) à déterminer 2) Calculer pour tout \(x \in J: f^{-1}(x)\) Essayer de faire l'exercice avant de voir la solution Réponse de la...
Le but de cet article est de trouver les polynômes qui vérifient : \[ p\circ p = p \]Cette question peut être reformulée de la manière suivante , Résoudre l'équation : \[ p\circ p = p \] Si \(p\) est une solution qui n'est pas le polynôme nul, alors le degré de \(p \circ p\) vaut \(\operatorname{deg}(p)^2\), et donc on a...
Calculer les produits suivants : \(A=\sqrt{3} \cdot \sqrt{12}\)\(B=\sqrt{7} \cdot \sqrt{28}\)\(C=\sqrt{19} \cdot \sqrt{76}\)\(D=\sqrt{50} \cdot \sqrt{\frac{1}{2}}\)\(E=\sqrt{\frac{9}{10}} \cdot \sqrt{\frac{40}{81}}\)\(F=\sqrt{14} \cdot \sqrt{6} \cdot \sqrt{21}\)\(G=\sqrt{55} \cdot \sqrt{33} \sqrt{15}\)\(H=\sqrt{360} \cdot \sqrt{18} \sqrt{605}\)
On a : \(\sqrt{12}=\sqrt{4 \times 3}\)\(\sqrt{12}=\sqrt{4} \times \sqrt{3}\)\(\sqrt{12}=2 \sqrt{3}\) \(\sqrt{24}=\sqrt{4 \times 6}\)\(\sqrt{24}=\sqrt{4} \times \sqrt{6}\)\(\sqrt{24}=2 \sqrt{6}\) \(\sqrt{8}=\sqrt{4 \times 2}\)\(\sqrt{8}=\sqrt{4} \times \sqrt{2}\)\(\sqrt{8}=2 \sqrt{2}\) \(\sqrt{72}=\sqrt{8 \times 9}\)\(\sqrt{72}=\sqrt{4 \times 2 \times 9}\)\(\sqrt{72}=\sqrt{4} \times...