soit \(a, b\) deux réels positifs non nuls , simplifier : \(A=\sqrt{\frac{25 a^2}{9}}\)\(B=\frac{1}{\sqrt{b}} \cdot \sqrt{\frac{b}{a}} \cdot \sqrt{b a}\)\(C=\sqrt{\frac{b}{a}} \cdot \sqrt{b^2 a} \cdot \frac{1}{\sqrt{b}}\)\(D=\sqrt{b^3} \sqrt{a b} \cdot \sqrt{b}\)\(E=\frac{\sqrt{b a^3} \cdot \sqrt{a b^2} \cdot \sqrt{(a b)^5}}{\sqrt{a b^4} \cdot \sqrt{b a^6}}\)
Compléter les égalités suivantes :1) \(\sqrt{\cdots}=25\)2) \(\sqrt{1,96}=\ldots\)3) \(\sqrt{()^2}=111\)4) \((-\sqrt{\cdots})^2=0,07\)5) \(\sqrt{\frac{36}{\cdots}}=\frac{\cdots}{13}\)6) \(-\sqrt{81}\)
Ecrire chacun des nombres suivants sous la forme \(\sqrt{a}\) où \(a\) est un rationnel positif : \(A=5 \sqrt{3}\)\(B=2 \sqrt{7}\)\(C=6 \sqrt{6}\)\(D=\dfrac{3}{4} \sqrt{2}\)\(E=\dfrac{\sqrt{21}}{13}\)\(F=\dfrac{\sqrt{338}}{14}\)
L'espace est muni d'un repère \(( O ; \vec{i} ; \vec{j} ; \vec{k})\). Comment déterminer une représentation paramétrique du plan passant par trois points non alignés A, B, C ? Il suffit d'utiliser la condition d'appartenance d'un point à ce plan . Par exemple : on veut déterminer une représentation paramétrique du plan passant...
trewterw