Simplifications des racines carrés
On a :
\(\sqrt{12}=\sqrt{4 \times 3}\)
\(\sqrt{12}=\sqrt{4} \times \sqrt{3}\)
\(\sqrt{12}=2 \sqrt{3}\)
\(\sqrt{24}=\sqrt{4 \times 6}\)
\(\sqrt{24}=\sqrt{4} \times \sqrt{6}\)
\(\sqrt{24}=2 \sqrt{6}\)
\(\sqrt{8}=\sqrt{4 \times 2}\)
\(\sqrt{8}=\sqrt{4} \times \sqrt{2}\)
\(\sqrt{8}=2 \sqrt{2}\)
\(\sqrt{72}=\sqrt{8 \times 9}\)
\(\sqrt{72}=\sqrt{4 \times 2 \times 9}\)
\(\sqrt{72}=\sqrt{4} \times \sqrt{9} \times \sqrt{2}\)
\(\sqrt{72}=2 \times 3 \times \sqrt{2}\)
\(\sqrt{72}=6 \sqrt{2}\)
\(\sqrt{60}=\sqrt{4 \times 15}\)
\(\sqrt{60}=\sqrt{4} \times \sqrt{15}\)
\(\sqrt{60}=2 \sqrt{15}\)
\(\sqrt{18}=\sqrt{9 \times 2}\)
\(\sqrt{18}=\sqrt{9} \times \sqrt{2}\)
\(\sqrt{18}=3 \sqrt{2}\)
\(\sqrt{50}=\sqrt{25 \times 2}\)
\(\sqrt{50}=\sqrt{25} \times \sqrt{2}\)
\(\sqrt{50}=5 \sqrt{2}\)
\(\sqrt{20}=\sqrt{4 \times 5}\)
\(\sqrt{20}=\sqrt{4} \times \sqrt{5}\)
\(\sqrt{20}=2 \sqrt{5}\)
\(\sqrt{75}=\sqrt{3 \times 25}\)
\(\sqrt{8}=\sqrt{3} \times \sqrt{25}\)
\(\sqrt{8}=5 \sqrt{3}\)