Une boîte pour les objets La Boîte à Merveilles est une boîte ordinaire contenant des objets ordinaires. Des objets hétéroclites, en matière transparente, en métal, en nacre. Un bouton de porcelaine, des boules de verres, des anneaux de cuivres, un minuscule cadenas sans clef, des clous à tête dorée, des encriers vides,...
1-Sentence-Summary: Hidden Potential asserts that everyone, not just geniuses and superstars, can achieve great things, providing a three-part framework for developing character skills, sustaining long-term motivation, and designing opportunity systems that allows anyone to grow, learn, and reach their highest heights. Read in: 4 minutes In 1991, the US National Junior High Chess...
Calculer : \(3 \sqrt{5} \cdot 4 \cdot \sqrt{5}\)\(3 \sqrt{5}+4 \cdot \sqrt{5}\)\(-2 \sqrt{11} \cdot 5 \cdot \sqrt{11}\)\(-2 \sqrt{11}+5 \cdot \sqrt{11}\)
Colinéarité de deux vecteurs Soient \(\vec{u}(x ; y ; z)\) et \(\vec{v}\left(x^{\prime} ; y^{\prime} ; z^{\prime}\right)\) deux vecteurs de l'espace rapporté à une base \((\vec{i} ; \vec{j} ; \vec{k})\). Les vecteurs \(\vec{u}\) et \(\vec{v}\) sont colinéaires si, et seulement si :\[\Delta_1=\left|\begin{array}{ll}x & x^{\prime} \\y &...
Calculer les limites suivantes : \(\lim _{x \rightarrow 2} \frac{\sqrt[3]{x}-2}{x-8}\) \(\lim _{x \rightarrow+\infty} \frac{\sqrt{x+1}}{\sqrt[3]{x^2-2}}\) \(\lim _{x \rightarrow 1^{+}} \frac{\sqrt[4]{x^2-1}}{\sqrt{x-1}}\) \(\lim _{x \rightarrow 1} \frac{\sqrt[3]{2 x+1}-\sqrt{x+1}}{x-1}\) \(\lim _{x \rightarrow 1} \frac{\sqrt[4]{x}-1}{x-1}\) \(\lim _{x \rightarrow 0}...