Les mathématiques sont omniprésentes dans la vie quotidienne, que ce soit pour mesurer les ingrédients d'une recette de cuisine, calculer le temps de trajet ou gérer son argent de poche. Leur importance est telle qu'il a été décidé de les rendre obligatoires au lycée. Regarde cette vidéo pour découvrir tout ce que...
On considère la fonction \(f\) définie par\[\left\{\begin{aligned}&f(x)=\frac{x^2}{|x|} \text { si } x \neq 0 \\&f(0)=0\end{aligned}\right.\]1) Donner une expression de \(f\) sans valeur absolue2) Calculer \(\lim _{x \rightarrow 0^{+}} f(x), \lim _{x \rightarrow 0^{-}} f(x)\)3) \(f\) est elle continue au point 0
Compléter les égalités : \(\sqrt{24}=\sqrt{\ldots \cdot 6}=\sqrt{\ldots} \cdot \sqrt{6}=\ldots \sqrt{6}\)\(\sqrt{32}=\sqrt{\ldots \cdot 2}=\sqrt{\ldots} \cdot \sqrt{2}=\ldots \sqrt{2}\)\(\sqrt{48}=\sqrt{\ldots \cdot 16}=\sqrt{\cdots} \cdot \sqrt{16}=4 \sqrt{\ldots}\)\(5 \sqrt{2}=\sqrt{\cdots} \cdot \sqrt{2}=\sqrt{\ldots \cdot 2}=\sqrt{\cdots}\)\(-3 \sqrt{11}=-\sqrt{\cdots}...