No data to show
Read More
Calculer les limites suivantes : \(\lim _{x \rightarrow 2} \frac{\sqrt[3]{x}-2}{x-8}\) \(\lim _{x \rightarrow+\infty} \frac{\sqrt{x+1}}{\sqrt[3]{x^2-2}}\) \(\lim _{x \rightarrow 1^{+}} \frac{\sqrt[4]{x^2-1}}{\sqrt{x-1}}\) \(\lim _{x \rightarrow 1} \frac{\sqrt[3]{2 x+1}-\sqrt{x+1}}{x-1}\) \(\lim _{x \rightarrow 1} \frac{\sqrt[4]{x}-1}{x-1}\) \(\lim _{x \rightarrow 0}...
On considère la fonction \(f\) définie sur \([2,+\infty[\) par : \(f(x)=x-2 \sqrt{x-1}\)1) Montrer que \(f\) admet une fonction réciproque définie sur un intervalle \(J\) à déterminer2) Calculer pour tout \(x \in J: f^{-1}(x)\) Correction Essayer de faire l'exercice avant de voir la correction 1. Montrer que \(f\) admet...
Cher élèves, dans cet article, nous avons rassemblé toutes les publications de la page "Mathématiques 2 BSE BIOF" sur la plateforme devoirs.ma. Vous y trouverez des cours détaillés, des exercices pratiques, des résumés et des astuces pour vous aider à mieux comprendre les concepts clés de cette matière. Le team de la...
Simplifier les expressions suivantes : \(\sqrt{24}=\sqrt{\ldots \cdot 6}=\sqrt{\ldots} \cdot \sqrt{6}=\ldots \sqrt{6}\)\(\sqrt{32}=\sqrt{\ldots \cdot 2}=\sqrt{\ldots} \cdot \sqrt{2}=\ldots \sqrt{2}\)\(\sqrt{48}=\sqrt{\ldots \cdot 16}=\sqrt{\ldots \cdot \sqrt{16}}=4 \sqrt{\ldots}\)\(5 \sqrt{2}=\sqrt{\ldots} \cdot \sqrt{2}=\sqrt{\ldots \cdot 2}=\sqrt{\ldots}\)\(-3 \sqrt{11}=-\sqrt{\ldots}...
trewterw