No data to show
Read More
a est un réel positif, simplifier : \begin{aligned}&A=\sqrt{36 a^2} \\&B=\sqrt{144 a^2+25 a^2} \\&C=\sqrt{\frac{a^2}{16}}+\sqrt{\frac{a^2}{9}} \\&D=\sqrt{225 a^2}-\sqrt{121 a^2}\end{aligned}


soit \(a, b\) deux réels positifs non nuls , simplifier : \(A=\sqrt{\frac{25 a^2}{9}}\)\(B=\frac{1}{\sqrt{b}} \cdot \sqrt{\frac{b}{a}} \cdot \sqrt{b a}\)\(C=\sqrt{\frac{b}{a}} \cdot \sqrt{b^2 a} \cdot \frac{1}{\sqrt{b}}\)\(D=\sqrt{b^3} \sqrt{a b} \cdot \sqrt{b}\)\(E=\frac{\sqrt{b a^3} \cdot \sqrt{a b^2} \cdot \sqrt{(a b)^5}}{\sqrt{a b^4} \cdot \sqrt{b a^6}}\)

Les mathématiques sont omniprésentes dans la vie quotidienne, que ce soit pour mesurer les ingrédients d'une recette de cuisine, calculer le temps de trajet ou gérer son argent de poche. Leur importance est telle qu'il a été décidé de les rendre obligatoires au lycée. Regarde cette vidéo pour découvrir tout ce que...

On considère la fonction \(f\) définie sur \([2,+\infty[\) par \(f(x)=x-2 \sqrt{x-1}\) 1) Montrer que \(f\) admet une fonction réciproque définie sur un intervalle \(J\) à déterminer 2) Calculer pour tout \(x \in J: f^{-1}(x)\) Essayer de faire l'exercice avant de voir la solution Réponse de la...
